Чаще всего дата-сайентисты устанавливают себе на компьютер Python-окружение, например, с помощью Anaconda или Miniconda, и после этого запускают локальный Jupyter-сервер. Альтернативой стала возможность использовать облачный сервис с готовыми ноутбуками и необходимым окружением, который можно изменять в режиме онлайн.
Это именно то, что предлагает блокнот CoLab — облачный сервис Jupyter в Google CoLaboratory, доступный из любой точки мира для написания кода или создания документации. Colab особенно хорошо подходит для машинного обучения, науки о данных и образования. По сути, Google Colab это Google Docs от мира данных.
Как Google Colab может изменить вашу работу с данными? Давайте разбираться.
Google CoLab сокращение от Google Colaboratory, это бесплатный сервис, позволяющий запускать и разрабатывать код на Python прямо в браузере.
С его помощью легко обмениваться и работать над проектами в реальном времени с другими пользователями. Он базируется на популярном фреймворке Jupyter Notebook, что делает его удобным инструментом для работы с данными, машинным обучением, глубоким обучением* и другими вычислительными задачами.
Google Colab предоставляет доступ к вычислительным ресурсам Google, таким как графические процессоры (GPU) и тензорные процессоры (TPU), принцип работы которых мы рассмотрим подробнее в этой статье.
*Глубокое обучение – это вид машинного обучения, который использует многослойные искусственные нейронные сети для анализа данных.
Суть CoLab заключается в создании интерактивной среды для экспериментов, анализа данных и и обучения моделей. Давайте рассмотрим, что же вы можете делать с помощью Colab:
Здесь можно найти интересную статью о том, как разработчик предлагает обучать глубокие нейронные сети на JavaScript, если вдруг вам не хватает экспериментов.
Kaggle — это платформа для соревнований по анализу данных и машинному обучению, а также социальная сеть для специалистов по обработке данных и машинному обучению. Они предоставляют функцию под названием Kernels, которая позволяет пользователям создавать и выполнять Jupyter Notebooks в облаке.
Microsoft Azure предоставляет сервис под названием Azure Notebooks, который позволяет пользователям создавать и выполнять Jupyter Notebooks в облаке с использованием вычислительных ресурсов Microsoft Azure.
IBM Watson Studio — это облачная платформа для разработки и развертывания моделей машинного обучения и анализа данных. Она предоставляет средства для создания и выполнения Jupyter Notebooks в облаке с использованием вычислительных ресурсов IBM.
Binder — это сервис, который позволяет превращать репозитории GitHub с Jupyter Notebooks в интерактивные среды выполнения. Пользователи могут запускать Jupyter Notebooks прямо в браузере, не устанавливая ничего локально.
Выбор между CPU, GPU и TPU зависит от конкретной задачи и требований к производительности. Google Colab хорош своей универсальностью, у вас есть возможность выбрать необходимый тип вычислительного ресурса в настройках среды выполнения вашего ноутбука.
Существенным недостатком сервиса являются ограничения по времени активного использования и функционалу. Однако есть возможность продлить время работы в Google Colab, подписавшись на Collab Pro, стоимостью 9,99 долларов в месяц. Это позволит увеличить объем памяти и время работы, а также получить приоритетный доступ к TPU. Но на данный момент подписка Collab Pro доступна только в Канаде и США.
Несмотря на эти недостатки, Google Colab считается популярным инструментом для работы с данными и машинным обучением благодаря своей доступности, удобству и широкому спектру предоставляемых возможностей. Советуем приглянуться!