Технология

MLOps vs DevOps и DataOps: ключевые сходства и различия

Автор: PlaysDev
Опубликовано: 26.03.2024

Будучи новой областью, MLOps быстро набирает обороты среди специалистов по данным, искусственному интеллекту и инженеров ML. В современном мире, основанном на данных, DevOps, DataOps и MLOps стали ключевыми для оптимизации рабочих процессов. Хотя на первый взгляд эти концепции кажутся похожими, понимание их тонкостей помогает оптимизировать различные части рабочего процесса.

Подробнее о машинном обучении

Машинное обучение (Machine Learning) — это подраздел искусственного интеллекта, который занимается разработкой алгоритмов и моделей, позволяющих компьютерам извлекать знания из данных и использовать их для принятия решений или прогнозирования.

Основная идея машинного обучения заключается в том, чтобы обучить компьютерные системы распознавать закономерности и шаблонность данных, а затем использовать эти знания для аналитики и прогнозирования.

К примеру, Netflix использует машинное обучение для персонализации рекомендаций контента для каждого пользователя.

Как это происходит? Система учитывает предпочтения пользователя, его историю просмотра, оценки, поведение во время просмотра и другие параметры (т.е. распознает закономерности и некие паттерны поведения), чтобы предложить пользователю наиболее подходящий контент в будущем.

В свою очередь, алгоритмы машинного обучения, такие как коллаборативная фильтрация и нейронные сети, используются для обработки этих данных и предсказания предпочтений пользователя.

Что такое MLOps (Machine Learning Operations)?

— это основная функция машинного обучения (ML), направленная на оптимизацию внедрения моделей машинного обучения в производство, а затем их обслуживания и мониторинга.

Концепция MLOps подробно описана в работе трёх немецких исследователей «Операции машинного обучения (MLOps): обзор, определение и архитектура». В исследовании описывается комплексная архитектура MLOps и рабочий процесс с функциональными компонентами и ролями.

«MLOps — это методология и практики, направленные на снижение затрат, связанных с развертыванием и обслуживанием моделей машинного обучения (ML), обеспечивая при этом их надежность и масштабируемость.»

Google Cloud

Объем MLOps в проектах машинного обучения может быть настолько целенаправленным или обширным, насколько того требует проект. В некоторых случаях MLOps может охватывать все: от конвейера данных до создания модели, тогда как в других проектах MLOps может потребоваться только для развертывания.

Большинство предприятий применяют принципы MLOps в следующих сферах:

  • Исследовательский анализ данных (EDA);
  • Подготовка данных и разработка функций;
  • Обучение и настройка модели;
  • Обзор модели и управление;
  • Вывод модели и обслуживание;
  • Мониторинг модели;
  • Автоматизированное переобучение модели.

Основная цель MLOps — это упрощение жизненного цикла разработки и эксплуатации моделей машинного обучения.

Итак, MLOps — это разновидность DevOps для моделей ML.

ML инженер – это?

ML инженер (ML Engineer) — это специалист, который занимается разработкой, обучением и развертыванием моделей машинного обучения. Его работа связана с применением алгоритмов машинного обучения и статистического анализа для решения конкретных задач и проблем продукта.

Остановимся подробнее на задачах ML инженера.

  1. Разработка и исследование моделей:
    Изучение данных и определение целей проекта.
    Исследование различных алгоритмов машинного обучения и их применимости к конкретной задаче.
    Создание и настройка моделей машинного обучения с использованием библиотек и фреймворков, таких как TensorFlow, PyTorch, Scikit-learn.
  2. Подготовка данных:
    Очистка и предобработка данных для подготовки их к обучению моделей.
    Преобразование и инженерия признаков для повышения информативности данных.
    Разработка процессов сбора и хранения данных.
  3. Обучение моделей:
    Обучение моделей машинного обучения на подготовленных данных.
    Оптимизация параметров моделей и выбор наилучших алгоритмов для достижения желаемых результатов.
    Оценка качества моделей с использованием различных метрик.
  4. Развертывание моделей:
    Развертывание обученных моделей машинного обучения в прод.
    Интеграция моделей с приложениями и системами, где они будут использоваться для прогнозирования или принятия решений.
    Оптимизация моделей для ускорения их работы в проде.
  5. Мониторинг и обслуживание моделей:
    Мониторинг производительности моделей в реальном времени.
    Обнаружение и устранение аномалий в работе моделей.
    Регулярное обновление и оптимизация моделей на основе новых данных и изменений в среде.
  6. Задачи на проектах могут включать в себя разработку модели для прогнозирования спроса на товары, обнаружения мошенничества в финансовых транзакциях, классификации изображений или текстов.

ML инженеры интегрируют свою разработку моделей с процессами MLOps – управление версиями кода и моделей, автоматизация развертывания, мониторинг производительности и т.д. Они используют инструменты и платформы, предоставляемые MLOps, для более эффективного управления жизненным циклом моделей.

Как MLOps может быть полезен различным специалистам?

  1. Для Data Scientist-ов: Если вы создаете модели машинного обучения, MLOps поможет вам научиться эффективно разворачивать их в прод, что позволит получать реальные результаты от ваших исследований.
  2. Для ML Engineer-ов: Вы сможете управлять несколькими моделями более эффективно, стандартизировать процессы разработки и развертывания моделей, что сделает вашу работу более организованной и масштабируемой.
  3. Для Data Engineer-ов: MLOps предоставит вам инструменты и методологии для управления всем жизненным циклом данных, включая валидацию, обучение, развертывание и мониторинг моделей машинного обучения.
  4. Для Data Analytic-ов: Вы сможете расширить свои навыки за пределы анализа данных и создания дашбордов, запуская собственные модели машинного обучения в онлайн-среде и получая реальные прогнозы и результаты.
  5. Для Software Engineer-ов: Вы будете понимать, как интегрировать модели машинного обучения в ваши продукты и проекты, обеспечивая их эффективное функционирование и масштабируемость.

В чем разница между MLOps и DevOps?

MLOps — это набор инженерных практик, использующихся для проектов машинного обучения, которые заимствованы из более широко распространенных принципов DevOps.
В то время как DevOps предлагает быстрый, непрерывно итеративный подход к доставке приложений, MLOps заимствует те же принципы для внедрения моделей машинного обучения в производство.

Так, главное различие MLOps и DevOps – объект управления. Основной фокус DevOps — это разработка, тестирование и развертывание программного обеспечения, а MLOps сосредоточен на управлении жизненным циклом моделей машинного обучения.

DevOps

MLOps как методология: в чем отличие от DevOps и DataOps?

Цель: Улучшение сотрудничества и коммуникации между разработчиками (Development) и операционными инженерами (Operations) для повышения скорости развертывания и качества программного обеспечения.

Фокус: Автоматизация процессов разработки, тестирования, развертывания и мониторинга программного обеспечения.

Применение: Применяется в области разработки и эксплуатации программного обеспечения в целом, независимо от специфики технологий или типа приложений.

DataOps

MLOps как методология: в чем отличие от DevOps и DataOps?

Цель: Улучшение сотрудничества и процессов в области управления данными для повышения скорости и качества работы с данными.

Фокус: Автоматизация и стандартизация процессов сбора, обработки, хранения, анализа и предоставления данных.

Применение: Применяется в области управления данными, обеспечивая прозрачность, эффективность и безопасность в работе с данными от их сбора до использования.

MLOps

MLOps как методология: в чем отличие от DevOps и DataOps?

Цель: Расширение методологии DevOps на область разработки, развертывания и управления моделями машинного обучения в проде.

Фокус: Управление жизненным циклом моделей машинного обучения, включая разработку, обучение, тестирование, развертывание и мониторинг.

Применение: Применяется в области разработки и эксплуатации моделей машинного обучения, обеспечивая эффективное управление моделями в проде.

Вам также может понравиться

Экспертиза
6 марта, 2024
PlaysDev
Что такое бэклог, стек, валидация — говорим на сленге программистов
Помогаем разобраться в популярных выражениях программистов. Узнайте, что такое бэкап, почему менеджеры пинают разработчиков и как прод может упасть?
Читать
СервисыТехнология
21 ноября, 2023
PlaysDev
Datadog: краткий обзор платформы для мониторинга
В этой статье мы рассмотрим платформу Datadog: её преимущества и недостатки, порог входа, виды и системы мониторинга и многое другое...
Читать
Экспертиза
14 февраля, 2024
PlaysDev
Кто такой CEO: краткий обзор C-level должностей
Какие обязанности у CEO, CMO, CTO, CIO, COO, CFO и как выглядит иерархия управленческого отдела? Разбираемся в понятиях C-level должностей и расшифровываем зарубежные аббревиатуры.
Читать
Экспертиза
22 марта, 2024
PlaysDev
Книги для саморазвития — что почитать для развития личности и самодисциплины
Что почитать для саморазвития: подборка полезных книг, которые подойдут каждому. Книги в подборке помогут вам развить самодисциплину, расширить знания в области бизнеса и достичь новых высот в вашей профессиональной деятельности, при условии, что вы сами к этому стремитесь!
Читать
Технология
10 апреля, 2024
PlaysDev
IoT технология: что такое интернет вещей простыми словами
Описываем рынок Интернета вещей на примерах популярных IoT устройств. Что такое IoT технология и при чем тут вещи: рассказываем откуда взялась концепция интернета вещей и как она используется сейчас.
Читать
Технология
26 апреля, 2024
PlaysDev
Облачные сервисы – что это такое и в чем их польза для бизнеса
Лучшие облачные сервисы для бизнеса. Как и зачем использовать облачные решения, какие задачи они решают. Также рассказываем про перспективы и направления развития облака.
Читать
Технология
9 апреля, 2025
PlaysDev
5 самых популярных продуктов Microsoft
Рассказываем про топовые продукты от Microsoft, которыми пользуются миллионы людей в мире. Как работает GitHub Copilot и какие самые популярные игры от Xbox Game Studios.
Читать
Технология
18 июля, 2023
PlaysDev
Обзор нововведений Kubernetes 1.27
Обзор на Kubernetes 1.27, состоящий из 60 изменений,18 из которых alpha, 29 переведены в бета-версию и 13 признаны стабильными.
Читать
Индустрия
19 июля, 2024
PlaysDev
Технологические тренды в 2024: самое главное
Дайджест из будущего: 9 востребованных технологий в 2024. Какие технологические тренды ты еще не слышал?
Читать
Экспертиза
19 апреля, 2024
PlaysDev
Системный администратор vs DevOps инженер: в чем разница?
Почему DevOps инженеров путают с сисадминами? В чем ключевые различия этих специалистов и чем занимается системный администратор?
Читать